If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64j^2-128j+64=39
We move all terms to the left:
64j^2-128j+64-(39)=0
We add all the numbers together, and all the variables
64j^2-128j+25=0
a = 64; b = -128; c = +25;
Δ = b2-4ac
Δ = -1282-4·64·25
Δ = 9984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9984}=\sqrt{256*39}=\sqrt{256}*\sqrt{39}=16\sqrt{39}$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-128)-16\sqrt{39}}{2*64}=\frac{128-16\sqrt{39}}{128} $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-128)+16\sqrt{39}}{2*64}=\frac{128+16\sqrt{39}}{128} $
| 15b2+21b=0 | | -13.72x^2+23.52x-10=0 | | -8a-13=-4a | | x/22+11=12 | | 225b+21b=0 | | 0.03(7t-3)=0.21(t-2)+0.33 | | x+3=2x5 | | 2(m-9)=4(m+1)-18 | | 6+2(-7r-2)=86 | | 2(m-9)=(m+1)-18 | | 4(2x+3)-6=3x+10 | | 6h+5(h-5)=0 | | 5(y-3=20 | | (x+3)^2+8(x+3)+7=0 | | 4/7n=32 | | 12-6z-14=7z+22-5z | | 4d-26=3d+4=180 | | 4y+16=-3y-12 | | x^2+8864=-500 | | 16(y-4)+2y=14y-5 | | 12x+4=24x-68 | | 43=35+v | | m³-2m²-4m+8=0 | | 7p+54=-9-2p | | -6(-9+7x)=432 | | 4(2r+8)=0 | | -4/5+1/3w=-1/2 | | 26=-5v-4 | | 4/7=28/x+18 | | x/3+x/8=4/3 | | -35x^2-8x+16=0 | | 30b^2+13b-3=0 |